## Physical Mathematics and the Fine-Structure Constant

.

Abstract: Research into ancient physical structures, some having been known as the seven wonders of the ancient world, inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry the research is concerned with the minimum of observations from physical data as exemplified by Eddington’s Principle. Current discussions of the interplay between physics and mathematics revive some of this early history of mathematics and offer insight into the fine-structure constant. Arthur Eddington’s work leads to a new calculation of the inverse fine-structure constant giving the same approximate value as ancient geometry combined with the golden ratio structure of the hydrogen atom. The hyperbolic function suggested by Alfred Landé leads to another result, involving the Laplace limit of Kepler’s equation, with the same approximate value and related to the aforementioned results. The accuracy of these results are consistent with the standard reference. Relationships between the four fundamental coupling constants are also found.
.
Inverse fine-structure constant is a root of: x4 – 136x3 – 136x2 – 818x + 1 = 0. This equation gives a value for x = 137.035 999 168 ….
CODATA (2014) Inverse alpha = 137.035 999 160 (33). The other root of the equation is approximately 1/818 and 818 = (136+1/3)6 = (4×136)+(2×137). OSF Preprints     Physical_Mathematics_and_the_Fine-Structure_Constant
.

## Fine-Structure Constant from Golden Ratio Geometry

.

After a brief review of the golden ratio in history and our previous exposition of the fine-structure constant and equations with the exponential function, the fine-structure constant is studied in the context of other research calculating the fine-structure constant from the golden ratio geometry of the hydrogen atom. This research is extended and the fine-structure constant is then calculated in powers of the golden ratio to an accuracy consistent with the most recent publications. The mathematical constants associated with the golden ratio are also involved in both the calculation of the fine-structure constant and the proton-electron mass ratio. These constants are included in symbolic geometry of historical relevance in the science of the ancients.

$\alpha^{-1}\simeq\frac{360}{\phi^{2}}-\frac{2}{\phi^{3}}+\frac{\mathit{A^{2}}}{K\phi^{4}}-\frac{\mathit{A^{\mathrm{3}}}}{K^{2}\phi^{5}}+\frac{A^{4}}{K^{3}\phi^{7}}\simeq137.035\,999\,168&space;.$

$A=e^{\pi}-7\pi-1$

α is the fine-structure constant, φ is the Golden Ratio, A is the Golden Apex of the Great Pyramid and K is the polygon circumscribing constant. 2016 CODATA: 137.035 999 160 (33).

.

## Fundamental Physics and the Fine-Structure Constant

From the exponential function of Euler’s equation to the geometry of a fundamental form, a calculation of the fine-structure constant and its relationship to the proton-electron mass ratio is given. Equations are found for the fundamental constants of the four forces of nature: electromagnetism, the weak force, the strong force and the force of gravitation. Symmetry principles are then associated with traditional physical measures.

## Quintessential Nature of the Fine-Structure Constant

Quintessential Nature of the Fine-Structure Constant  by  Michael Sherbon An introduction is given to the geometry and harmonics of the Golden Apex in the Great Pyramid, with the metaphysical and mathematical determination of the fine-structure constant of electromagnetic interactions. Newton’s gravitational constant is also presented in harmonic form and other fundamental physical constants are then found related to the quintessential geometry of the Golden Apex in the Great Pyramid.

## Fundamental Nature of the Fine-Structure Constant

Fundamental Nature of the Fine-Structure Constant by Michael A. Sherbon        Abstract: Arnold Sommerfeld introduced the fine-structure constant that determines the strength of the electromagnetic interaction. Following Sommerfeld, Wolfgang Pauli left several clues to calculating the fine-structure constant with his research on Johannes Kepler’s view of nature and Pythagorean geometry. The Laplace limit of Kepler’s equation in classical mechanics, the Bohr-Sommerfeld model of the hydrogen atom and Julian Schwinger’s research enable a calculation of the electron magnetic moment anomaly. Considerations of fundamental lengths such as the charge radius of the proton and mass ratios suggest some further foundational interpretations of quantum electrodynamics. International Journal of Physical Research, Vol. 2, No. 1 (2014).  Available at: http://www.sciencepubco.com/index.php/IJPR/article/view/1817  SSRN: 2380218 .                                                                                                                                       .

## Classical Quintessence

.                                                   ~                                                        .

Classical Quintessence and the Cosmological Constant by Michael A. Sherbon

Abstract: From the cosmology of classical quintessence and the Cosmological Circle of ancient geometry, quintessence is calculated as the primary fundamental physical constant. The role of the fine-structure constant in quantum electrodynamics is briefly discussed and the same value for inverse alpha, the inverse fine-structure constant found in previous work, is confirmed. Then the cosmological constant is calculated, confirming a recent theoretical prediction related to the fine-structure constant and the cosmological constant.

SSRN Classics: Journal of Philosophical & Scientific Texts (12 July 2009)   SSRN: 1433068

~                                                        . .                                                   ~