Fine-Structure Constant from Golden Ratio Geometry

.

After a brief review of the golden ratio in history and our previous exposition of the fine-structure constant and equations with the exponential function, the fine-structure constant is studied in the context of other research calculating the fine-structure constant from the golden ratio geometry of the hydrogen atom. This research is extended and the fine-structure constant is then calculated in powers of the golden ratio to an accuracy consistent with the most recent publications. The mathematical constants associated with the golden ratio are also involved in both the calculation of the fine-structure constant and the proton-electron mass ratio. These constants are included in symbolic geometry of historical relevance in the science of the ancients.

α is the fine-structure constant, φ is the Golden Ratio, A is the Golden Apex of the Great Pyramid and K is the polygon circumscribing constant. 2016 CODATA: 137.035 999 160 (33).

Sherbon, M.A. “Fine-Structure Constant from Golden Ratio Geometry,” International Journal of Mathematics and Physical Sciences Research, 5, 2, 89-100 (2018). RG:322797654

.

 


 

Advertisements

Mathematical Constants of Natural Philosophy

Mathematical Constants of Natural Philosophy

– Michael A. Sherbon

Abstract: Plato’s theory of everything is an introduction to a Pythagorean natural philosophy that includes Egyptian sources. The Pythagorean Table and Pythagorean harmonics from the ancient geometry of the Cosmological Circle are related to symbolic associations of basic mathematical constants with the five elements of Plato’s allegorical cosmology: Archimedes constant, Euler’s number, the polygon circumscribing limit, the golden ratio, and Aristotle’s quintessence. Quintessence is representative of the whole, or the one in four, extraneously considered a separate element or fifth force. This relationship with four fundamental interactions or forces also involves the correlation of constants with the five Platonic solids: tetrahedron, hexahedron, octahedron, icosahedron, and dodecahedron. The values of several fundamental physical constants are also calculated, and a basic equation is given for a unified physical theory in the geometric universe of Plato’s natural philosophy.

SSRN Classics: Journal of Philosophical & Scientific Texts (July 21, 2010) SSRN: 1646568